We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

math.AP

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Mathematics > Analysis of PDEs

Title: A variational problem associated with the minimal speed of travelling waves for spatially periodic reaction-diffusion equations

Abstract: We consider the equation $u_t=u_{xx}+b(x)u(1-u),$ $x\in\mathbb R,$ where $b(x)$ is a nonnegative measure on $\mathbb R$ that is periodic in $x.$ In the case where $b(x)$ is a smooth periodic function, it is known that there exists a travelling wave with speed $c$ for any $c\geq c^*(b),$ where $c^*(b)$ is a certain positive number depending on $b.$ Such a travelling wave is often called a \lq\lq pulsating travelling wave" or a \lq\lq periodic travelling wave", and $c^*(b)$ is called the \lq\lq minimal speed". In this paper, we first extend this theory by showing the existence of the minimal speed $c^*(b)$ for any nonnegative measure $b$ with period $L.$ Next we study the question of maximizing $c^*(b)$ under the constraint $\int_{[0,L)}b(x)dx=\alpha L,$ where $\alpha$ is an arbitrarily given constant. This question is closely related to the problem studied by mathematical ecologists in late 1980's but its answer has not been known. We answer this question by proving that the maximum is attained by periodically arrayed Dirac's delta functions $\alpha L\sum_{k\in\mathbb Z}\delta(x+kL).$
Subjects: Analysis of PDEs (math.AP)
Cite as: arXiv:1004.0573 [math.AP]
  (or arXiv:1004.0573v1 [math.AP] for this version)

Submission history

From: Xing Liang [view email]
[v1] Mon, 5 Apr 2010 06:55:29 GMT (25kb)

Link back to: arXiv, form interface, contact.