We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cond-mat.str-el

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Condensed Matter > Strongly Correlated Electrons

Title: Evidence for a New Intermediate Phase in a Strongly Correlated 2D System near Wigner Crystallization

Abstract: How the two dimensional (2D) quantum Wigner crystal (WC) transforms into the metallic liquid phase remains to be an outstanding problem in physics. In theories considering the 2D WC to liquid transition in the clean limit, it was suggested that a number of intermediate phases might exist. We have studied the transformation between the metallic fluid phase and the low magnetic field reentrant insulating phase (RIP) which was interpreted as due to WC formation [Qiu et al, PRL 108, 106404 (2012)], in a strongly correlated 2D hole system with large interaction parameter $r_s$ ($\sim~$20-30) and high mobility. Instead of a sharp transition, we found that increasing density (or lowering $r_s$) drives the RIP into a state where the incipient RIP coexists with Fermi liquid. This apparent mixture phase intermediate between Fermi liquid and WC also exhibits a non-trivial temperature dependent resistivity behavior which may be qualitatively understood by the reversed melting of WC in the mixture, in analogy to the Pomeranchuk effect in the solid-liquid mixture of Helium-3.
Subjects: Strongly Correlated Electrons (cond-mat.str-el)
Cite as: arXiv:1509.07463 [cond-mat.str-el]
  (or arXiv:1509.07463v1 [cond-mat.str-el] for this version)

Submission history

From: Xuan Gao [view email]
[v1] Thu, 24 Sep 2015 18:19:04 GMT (526kb)

Link back to: arXiv, form interface, contact.