We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cond-mat.supr-con

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Condensed Matter > Superconductivity

Title: Electron pairing in the pseudogap state revealed by shot noise in copper-oxide junctions

Abstract: In the quest to understand high-temperature superconductivity in copper oxides, a vigorous debate has been focused on the pseudogap - a partial gap that opens over portions of the Fermi surface in the 'normal' state above the bulk critical temperature ($T_{c}$). The pseudogap has been attributed to precursor superconductivity, to the existence of preformed pairs, or to competing orders such as charge-density waves. A direct determination of the charge of carriers as a function of temperature and bias could help resolve among these alternatives. Here, we report measurements of the shot noise of tunneling current in high-quality La$_{2-x}$Sr$_{x}$CuO$_{4}$/La$_{2}$CuO$_{4}$/La$_{2-x}$Sr$_{x}$CuO$_{4}$ (LSCO/LCO/LSCO) heterostructures fabricated using atomic-layer-by-layer molecular beam epitaxy, for several doping levels. The data delineate three distinct regions in the bias voltage-temperature ($V-T$) space. Well outside the superconducting gap region, the shot noise agrees quantitatively with independent tunneling of charge-e carriers. Deep within the gap, shot noise is greatly enhanced, reminiscent of multiple Andreev reflections. Starting above $T_{c}$ and extending to biases much larger than the gap, there is a broad region in which the noise substantially exceeds the expectations of single-charge tunneling, indicating pairing of carriers. Pairs are detectable deep into the pseudogap region of temperature and bias.
Comments: Author's version of an article published in Nature on 21 August 2019. Link to the published paper: this https URL
Subjects: Superconductivity (cond-mat.supr-con); Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Strongly Correlated Electrons (cond-mat.str-el)
Journal reference: Nature 572, 493-496 (2019)
DOI: 10.1038/s41586-019-1486-7
Cite as: arXiv:2012.02673 [cond-mat.supr-con]
  (or arXiv:2012.02673v1 [cond-mat.supr-con] for this version)

Submission history

From: Douglas Natelson [view email]
[v1] Fri, 4 Dec 2020 15:44:20 GMT (2699kb)

Link back to: arXiv, form interface, contact.