We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cond-mat.str-el

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Condensed Matter > Strongly Correlated Electrons

Title: Magnetic anisotropy from linear defect structures in correlated electron systems

Abstract: Correlated electron systems, particularly iron-based superconductors, are extremely sensitive to strain, which inevitably occurs in the crystal growth process. Built-in strain of this type has been proposed as a possible explanation for experiments where nematic order has been observed at high temperatures corresponding to the nominally tetragonal phase of iron-based superconductors. Strain is assumed to produce linear defect structures, e.g. dislocations, which are quite similar to O vacancy chainlets in the underdoped cuprate superconductor YBCO. Here we investigate a simple microscopic model of dislocations in the presence of electronic correlations, which create defect states that can drive magnetic anisotropy of this kind, if spin orbit interaction is present. We estimate the contribution of these dislocations to magnetic anisotropy as detected by current torque magnetometry experiments in both cuprates and Fe-based systems.
Comments: 10 pages, 9 figures
Subjects: Strongly Correlated Electrons (cond-mat.str-el); Superconductivity (cond-mat.supr-con)
Journal reference: Phys. Rev. B 103, 245132 (2021)
DOI: 10.1103/PhysRevB.103.245132
Cite as: arXiv:2012.03824 [cond-mat.str-el]
  (or arXiv:2012.03824v2 [cond-mat.str-el] for this version)

Submission history

From: Mainak Pal [view email]
[v1] Mon, 7 Dec 2020 16:16:46 GMT (1041kb,D)
[v2] Thu, 15 Jul 2021 16:46:10 GMT (970kb,D)

Link back to: arXiv, form interface, contact.