We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

quant-ph

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Quantum Physics

Title: Free fermions behind the disguise

Abstract: An invaluable method for probing the physics of a quantum many-body spin system is a mapping to noninteracting effective fermions. We find such mappings using only the frustration graph $G$ of a Hamiltonian $H$, i.e., the network of anticommutation relations between the Pauli terms in $H$ in a given basis. Specifically, when $G$ is (even-hole, claw)-free, we construct an explicit free-fermion solution for $H$ using only this structure of $G$, even when no Jordan-Wigner transformation exists. The solution method is generic in that it applies for any values of the couplings. This mapping generalizes both the classic Lieb-Schultz-Mattis solution of the XY model and an exact solution of a spin chain recently given by Fendley, dubbed "free fermions in disguise." Like Fendley's original example, the free-fermion operators that solve the model are generally highly nonlinear and nonlocal, but can nonetheless be found explicitly using a transfer operator defined in terms of the independent sets of $G$. The associated single-particle energies are calculated using the roots of the independence polynomial of $G$, which are guaranteed to be real by a result of Chudnovsky and Seymour. Furthermore, recognizing (even-hole, claw)-free graphs can be done in polynomial time, so recognizing when a spin model is solvable in this way is efficient. We give several example families of solvable models for which no Jordan-Wigner solution exists, and we give a detailed analysis of such a spin chain having 4-body couplings using this method.
Comments: 29 pages, 9 figures
Subjects: Quantum Physics (quant-ph); Statistical Mechanics (cond-mat.stat-mech); Strongly Correlated Electrons (cond-mat.str-el); High Energy Physics - Theory (hep-th); Mathematical Physics (math-ph)
DOI: 10.1007/s00220-021-04220-w
Cite as: arXiv:2012.07857 [quant-ph]
  (or arXiv:2012.07857v2 [quant-ph] for this version)

Submission history

From: Samuel J Elman [view email]
[v1] Mon, 14 Dec 2020 19:00:01 GMT (945kb,D)
[v2] Mon, 8 Nov 2021 02:07:21 GMT (1033kb,D)

Link back to: arXiv, form interface, contact.