We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cond-mat.mtrl-sci

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Condensed Matter > Materials Science

Title: Field-induced reorientation of helimagnetic order in Cu$_2$OSeO$_3$ probed by magnetic force microscopy

Abstract: Cu$_2$OSeO$_3$ is an insulating skyrmion-host material with a magnetoelectric coupling giving rise to an electric polarization with a characteristic dependence on the magnetic field $\vec H$. We report magnetic force microscopy imaging of the helical real-space spin structure on the surface of a bulk single crystal of Cu$_2$OSeO$_3$. In the presence of a magnetic field, the helimagnetic order in general reorients and acquires a homogeneous component of the magnetization, resulting in a conical arrangement at larger fields. We investigate this reorientation process at a temperature of 10~K for fields close to the crystallographic $\langle 110\rangle$ direction that involves a phase transition at $H_{c1}$. Experimental evidence is presented for the formation of magnetic domains in real space as well as for the microscopic origin of relaxation events that accompany the reorientation process. In addition, the electric polarization is measured by means of Kelvin-probe force microscopy. We show that the characteristic field dependency of the electric polarization originates in this helimagnetic reorientation process. Our experimental results are well described by an effective Landau theory previously invoked for MnSi, that captures the competition between magnetocrystalline anisotropies and Zeeman energy.
Subjects: Materials Science (cond-mat.mtrl-sci); Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
Journal reference: Physical Review B102, 024426 (2020)
DOI: 10.1103/PhysRevB.102.024426
Cite as: arXiv:2103.11953 [cond-mat.mtrl-sci]
  (or arXiv:2103.11953v1 [cond-mat.mtrl-sci] for this version)

Submission history

From: Peter Milde [view email]
[v1] Mon, 22 Mar 2021 15:47:34 GMT (25897kb,D)

Link back to: arXiv, form interface, contact.