We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

quant-ph

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Quantum Physics

Title: The Quantum and Classical Streaming Complexity of Quantum and Classical Max-Cut

Abstract: We investigate the space complexity of two graph streaming problems: Max-Cut and its quantum analogue, Quantum Max-Cut. Previous work by Kapralov and Krachun [STOC `19] resolved the classical complexity of the \emph{classical} problem, showing that any $(2 - \varepsilon)$-approximation requires $\Omega(n)$ space (a $2$-approximation is trivial with $\textrm{O}(\log n)$ space). We generalize both of these qualifiers, demonstrating $\Omega(n)$ space lower bounds for $(2 - \varepsilon)$-approximating Max-Cut and Quantum Max-Cut, even if the algorithm is allowed to maintain a quantum state. As the trivial approximation algorithm for Quantum Max-Cut only gives a $4$-approximation, we show tightness with an algorithm that returns a $(2 + \varepsilon)$-approximation to the Quantum Max-Cut value of a graph in $\textrm{O}(\log n)$ space. Our work resolves the quantum and classical approximability of quantum and classical Max-Cut using $\textrm{o}(n)$ space.
We prove our lower bounds through the techniques of Boolean Fourier analysis. We give the first application of these methods to sequential one-way quantum communication, in which each player receives a quantum message from the previous player, and can then perform arbitrary quantum operations on it before sending it to the next. To this end, we show how Fourier-analytic techniques may be used to understand the application of a quantum channel.
Subjects: Quantum Physics (quant-ph); Data Structures and Algorithms (cs.DS)
Report number: SAND2022-12588 O
Cite as: arXiv:2206.00213 [quant-ph]
  (or arXiv:2206.00213v2 [quant-ph] for this version)

Submission history

From: John Michael Goddard Kallaugher [view email]
[v1] Wed, 1 Jun 2022 03:40:56 GMT (82kb)
[v2] Tue, 20 Sep 2022 02:48:20 GMT (83kb)

Link back to: arXiv, form interface, contact.