We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cs.CV

Change to browse by:

cs

References & Citations

DBLP - CS Bibliography

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Computer Science > Computer Vision and Pattern Recognition

Title: A novel method for data augmentation: Nine Dot Moving Least Square (ND-MLS)

Abstract: Data augmentation greatly increases the amount of data obtained based on labeled data to save on expenses and labor for data collection and labeling. We present a new approach for data augmentation called nine-dot MLS (ND-MLS). This approach is proposed based on the idea of image defor-mation. Images are deformed based on control points, which are calculated by ND-MLS. The method can generate over 2000 images for one exist-ing dataset in a short time. To verify this data augmentation method, extensive tests were performed covering 3 main tasks of computer vision, namely, classification, detection and segmentation. The results show that 1) in classification, 10 images per category were used for training, and VGGNet can obtain 92% top-1 acc on the MNIST dataset of handwritten digits by ND-MLS. In the Omniglot dataset, the few-shot accuracy usu-ally decreases with the increase in character categories. However, the ND-MLS method has stable performance and obtains 96.5 top-1 acc in Res-Net on 100 different handwritten character classification tasks; 2) in segmentation, under the premise of only ten original images, DeepLab obtains 93.5%, 85%, and 73.3% m_IOU(10) on the bottle, horse, and grass test datasets, respectively, while the cat test dataset obtains 86.7% m_IOU(10) with the SegNet model; 3) with only 10 original images from each category in object detection, YOLO v4 obtains 100% and 97.2% bottle and horse detection, respectively, while the cat dataset obtains 93.6% with YOLO v3. In summary, ND-MLS can perform well on classification, object detec-tion, and semantic segmentation tasks by using only a few data.
Comments: 16 pages,13 figures
Subjects: Computer Vision and Pattern Recognition (cs.CV)
Cite as: arXiv:2208.11532 [cs.CV]
  (or arXiv:2208.11532v1 [cs.CV] for this version)

Submission history

From: Yanchao Zhang [view email]
[v1] Wed, 24 Aug 2022 13:26:53 GMT (3365kb)

Link back to: arXiv, form interface, contact.