We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cs.CV

Change to browse by:

References & Citations

DBLP - CS Bibliography

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Computer Science > Computer Vision and Pattern Recognition

Title: Boomerang: Local sampling on image manifolds using diffusion models

Abstract: Diffusion models can be viewed as mapping points in a high-dimensional latent space onto a low-dimensional learned manifold, typically an image manifold. The intermediate values between the latent space and image manifold can be interpreted as noisy images which are determined by the noise scheduling scheme employed during pre-training. We exploit this interpretation to introduce Boomerang, a local image manifold sampling approach using the dynamics of diffusion models. We call it Boomerang because we first add noise to an input image, moving it closer to the latent space, then bring it back to the image space through diffusion dynamics. We use this method to generate images which are similar, but nonidentical, to the original input images on the image manifold. We are able to set how close the generated image is to the original based on how much noise we add. Additionally, the generated images have a degree of stochasticity, allowing us to locally sample as many times as we want without repetition. We show three applications for which Boomerang can be used. First, we provide a framework for constructing privacy-preserving datasets having controllable degrees of anonymity. Second, we show how to use Boomerang for data augmentation while staying on the image manifold. Third, we introduce a framework for image super-resolution with 8x upsampling. Boomerang does not require any modification to the training of diffusion models and can be used with pretrained models on a single, inexpensive GPU.
Subjects: Computer Vision and Pattern Recognition (cs.CV); Machine Learning (cs.LG); Machine Learning (stat.ML)
Cite as: arXiv:2210.12100 [cs.CV]
  (or arXiv:2210.12100v1 [cs.CV] for this version)

Submission history

From: Ali Siahkoohi [view email]
[v1] Fri, 21 Oct 2022 16:52:16 GMT (5536kb,D)
[v2] Wed, 17 Apr 2024 21:16:56 GMT (5675kb,D)

Link back to: arXiv, form interface, contact.