We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

eess.SY

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Electrical Engineering and Systems Science > Systems and Control

Title: Rarest-First with Probabilistic-Mode-Suppression

Abstract: Recent studies suggested that the BitTorrent's rarest-first protocol, owing to its work-conserving nature, can become unstable in the presence of non-persistent users. Consequently, for any provably stable protocol, many peers, at some point, would have to be endogenously forced to hold off their file-download activity. In this work, we propose a tunable piece-selection policy that minimizes this (undesirable) requisite by combining the (work-conserving but not stabilizing) rarest-first protocol with only an appropriate share of the (non-work conserving and stabilizing) mode-suppression protocol. We refer to this policy as ``Rarest-First with Probabilistic Mode-Suppression'' or simply RFwPMS. We study RFwPMS using a stochastic abstraction of the BitTorrent network that is general enough to capture a multiple swarm setting of non-persistent users -- each swarm having its own altruistic preferences that may or may not overlap with those of other swarms. Using Lyapunov drift analysis, we show that for all kinds of inter-swarm behaviors and all arrival-rate configurations, RFwPMS is stable. Then, using the Kingman's moment bound technique, we further show that the expected steady-state sojourn time of RFwPMS is independent of the arrival-rate in the single-swarm case (under a mild additional assumption). Finally, our simulation-based performance evaluation confirms our theoretical findings and shows that the steady-state expected sojourn time is linear in the file-size (compared to our loose estimate of a polynomial with degree 6). Overall, an improved performance is observed in comparison to previously proposed stabilizing schemes like mode-suppression (MS).
Subjects: Systems and Control (eess.SY)
Cite as: arXiv:2211.00213 [eess.SY]
  (or arXiv:2211.00213v1 [eess.SY] for this version)

Submission history

From: Nouman Khan [view email]
[v1] Tue, 1 Nov 2022 01:45:33 GMT (3085kb,D)

Link back to: arXiv, form interface, contact.