We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cond-mat.mtrl-sci

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Condensed Matter > Materials Science

Title: Compensation of anisotropy in spin-Hall devices for neuromorphic applications

Abstract: Spintronic nano-oscillators with reduced non-linearity could offer key benefits for realizing neuromorphic applications such as spike-based neurons and frequency multiplexing in neural networks. Here, we experimentally demonstrate the reduction in non-linearity of a spin-Hall nano-oscillator (SHNO) by compensation of its effective magnetic anisotropy. The study involves optimization of Co/Ni multilayer growth to achieve the compensation, followed by spin diode measurements on patterned microstrips to quantify their anisotropy. The relation between the second ($H_{k2}$ = 0.47 mT) and the first order ($H_{k1}^{eff}$ = $-$0.8 mT) anisotropy fields reveals the existence of an easy cone, thereby validating the presence of compensation. Furthermore, we demonstrate a synapse based on the compensated spin diode which has a fixed frequency when the input power is varied. We then study the current-induced auto-oscillation properties of SHNOs on compensated films by patterning nano-constrictions of widths 200 and 100 nm. The invariance of the resonance frequency and linewidth of the compensated SHNO with applied dc current indicates the absence of non-linearity. This independence is maintained irrespective of the applied external fields and its orientations. The compensated SHNO obtained has a linewidth of 1.1 MHz and a peak output power of up to 1 pW/MHz emulating a nano-neuron with a low linewidth and a fixed frequency.
Subjects: Materials Science (cond-mat.mtrl-sci); Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
Cite as: arXiv:2301.03794 [cond-mat.mtrl-sci]
  (or arXiv:2301.03794v1 [cond-mat.mtrl-sci] for this version)

Submission history

From: Pankaj Sethi [view email]
[v1] Tue, 10 Jan 2023 05:38:49 GMT (1084kb)

Link back to: arXiv, form interface, contact.