We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

quant-ph

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Quantum Physics

Title: Circle fit optimization for resonator quality factor measurements: point redistribution for maximal accuracy

Abstract: The control of material loss mechanisms is playing an increasingly important role for improving coherence times of superconducting quantum devices. Such material losses can be characterized through the measurement of planar superconducting resonators, which reflect losses through the resonance's quality factor $Q_l$. The resonance quality factor consists of both internal (material) losses as well as coupling losses when resonance photons escape back into the measurement circuit. The combined losses are then described as $Q_l^{-1} = \mathrm{Re}\{Q_c^{-1}\} + Q_i^{-1}$, where $Q_c$ and $Q_i$ reflect the coupling and internal quality factors of the resonator, respectively. To separate the relative contributions of $Q_i$ and $Q_c$ to $Q_l$, diameter-correcting circle fits use algebraic or geometric means to fit the resonance signal on the complex plane. However, such circle fits can produce varied results, so to address this issue, we use a combination of simulation and experiment to determine the reliability of a fitting algorithm across a wide range of quality factor values from $Q_i\ll Q_c$ to $Q_c\ll Q_i$. In addition, we develop a novel measurement protocol that can not only reduce fitting errors by factors $\gtrsim 2$ but also mitigates the influence of the measurement background on the fit results. This technique can be generalized for other resonance systems beyond superconducting resonators.
Comments: 13 pages, 7 figures
Subjects: Quantum Physics (quant-ph); Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
Cite as: arXiv:2301.06364 [quant-ph]
  (or arXiv:2301.06364v2 [quant-ph] for this version)

Submission history

From: Paul Baity [view email]
[v1] Mon, 16 Jan 2023 11:18:58 GMT (11367kb,D)
[v2] Fri, 24 Nov 2023 16:45:13 GMT (7273kb,D)

Link back to: arXiv, form interface, contact.