We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cond-mat.mes-hall

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Condensed Matter > Mesoscale and Nanoscale Physics

Title: Quantum Dynamics of Attractive and Repulsive Polarons in a Doped MoSe$_2$ Monolayer

Abstract: When mobile impurities are introduced and coupled to a Fermi sea, new quasiparticles known as Fermi polarons are formed. There are two interesting, yet drastically different regimes of the Fermi polaron problem: (I) the attractive polaron (AP) branch, connected to pairing phenomena spanning the crossover from BCS superfluidity to the Bose-Einstein condensation of molecules; and (II) the repulsive branch (RP), which underlies the physics responsible for Stoner's itinerant ferromagnetism. Here, we study Fermi polarons in two dimensional systems, where many questions and debates regarding their nature persist. The model system we investigate is a doped MoSe$_2$ monolayer. We find the observed AP-RP energy splitting and the quantum dynamics of attractive polarons agree with the predictions of polaron theory. As the doping density increases, the quantum dephasing of the attractive polarons remains constant, indicative of stable quasiparticles, while the repulsive polaron dephasing rate increases nearly quadratically. The dynamics of Fermi polarons are of critical importance for understanding the pairing and magnetic instabilities that lead to the formation of rich quantum phases found in a wide range of physical systems including nuclei, cold atomic gases, and solids.
Comments: 7 pages, 4 figures
Subjects: Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Materials Science (cond-mat.mtrl-sci); Quantum Gases (cond-mat.quant-gas)
Journal reference: Phys. Rev. X 13, 011029 (2023)
DOI: 10.1103/PhysRevX.13.011029
Cite as: arXiv:2303.00907 [cond-mat.mes-hall]
  (or arXiv:2303.00907v1 [cond-mat.mes-hall] for this version)

Submission history

From: Di Huang [view email]
[v1] Thu, 2 Mar 2023 01:56:32 GMT (3622kb,D)

Link back to: arXiv, form interface, contact.