We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

math.NA

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Mathematics > Numerical Analysis

Title: An Adaptive Parallel Arc-Length Method

Abstract: Parallel computing is omnipresent in today's scientific computer landscape, starting at multicore processors in desktop computers up to massively parallel clusters. While domain decomposition methods have a long tradition in computational mechanics to decompose spatial problems into multiple subproblems that can be solved in parallel, advancing solution schemes for dynamics or quasi-statics are inherently serial processes. For quasi-static simulations, however, there is no accumulating 'time' discretization error, hence an alternative approach is required. In this paper, we present an Adaptive Parallel Arc-Length Method (APALM). By using a domain parametrization of the arc-length instead of time, the multi-level error for the arc-length parametrization is formed by the load parameter and the solution norm. By applying local refinements in the arc-length parameter, the APALM refines solutions where the non-linearity in the load-response space is maximal. The concept is easily extended for bifurcation problems. The performance of the method is demonstrated using isogeometric Kirchhoff-Love shells on problems with snap-through and pitch-fork instabilities. It can be concluded that the adaptivity of the method works as expected and that a relatively coarse approximation of the serial initialization can already be used to produce a good approximation in parallel.
Subjects: Numerical Analysis (math.NA)
Cite as: arXiv:2303.01075 [math.NA]
  (or arXiv:2303.01075v1 [math.NA] for this version)

Submission history

From: Hugo Verhelst [view email]
[v1] Thu, 2 Mar 2023 08:57:26 GMT (121kb)

Link back to: arXiv, form interface, contact.