We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

astro-ph.HE

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Astrophysics > High Energy Astrophysical Phenomena

Title: Astronomical puzzle Cyg X-3 is a hidden Galactic ultraluminous X-ray source

Authors: Alexandra Veledina, Fabio Muleri, Juri Poutanen, Jakub Podgorný, Michal Dovčiak, Fiamma Capitanio, Eugene Churazov, Alessandra De Rosa, Alessandro Di Marco, Sofia Forsblom, Philip Kaaret, Henric Krawczynski, Fabio La Monaca, Vladislav Loktev, Alexander A. Lutovinov, Sergey V. Molkov, Alexander A. Mushtukov, Ajay Ratheesh, Nicole Rodriguez Cavero, James F. Steiner, Rashid A. Sunyaev, Sergey S. Tsygankov, Andrzej A. Zdziarski, Stefano Bianchi, Joe S. Bright, Nikolaj Bursov, Enrico Costa, Elise Egron, Javier A. Garcia, David A. Green, Mark Gurwell, Adam Ingram, Jari J. E. Kajava, Ruta Kale, Alex Kraus, Denys Malyshev, Frédéric Marin, Giorgio Matt, Michael McCollough, Ilia A. Mereminskiy, Nikolaj Nizhelsky, Giovanni Piano, Maura Pilia, Carlotta Pittori, Ramprasad Rao, Simona Righini, et al. (84 additional authors not shown)
Abstract: How black holes consume and eject matter has been the subject of intense studies for more than 60 years. The luminosity of these systems are often compared to the Eddington limit, the border at which the spherical accretion is inhibited by the radiation pressure of photons it produces. The discovery of ultraluminous X-ray sources (ULXs) showed that accretion can proceed even when the apparent luminosity exceeds the Eddington limit (Kaaret et al. 2017). High apparent luminosity might be produced by the beaming of the incident radiation by a thick collimated outflow or by a truly super-Eddington accretion flow. However, possibilities to study these outflows in detail are limited, as ULXs are typically found in distant galaxies. Using the Imaging X-ray Polarimetry Explorer (IXPE, Weisskopf et al. 2022), we made the first measurement of X-ray polarization in Galactic X-ray binary Cyg X-3. The detection of high, $\approx$25\%, nearly energy-independent linear polarization, orthogonal to the direction of the radio ejections, unambiguously indicates the primary source is obscured and the observer on Earth only sees reflected and scattered light. Modelling shows there is an optically thick envelope with a narrow funnel around the primary X-ray source in the system. We derive an upper limit on the opening angle of the funnel that implies a lower limit on the beamed luminosity exceeding the Eddington value. We show that Cyg X-3 is viewed as a ULX to an extragalactic observer located along the axis of the funnel. Our findings reveal this unique persistent source as an ideal laboratory for the study of the inner workings of ULX central engines.
Comments: 52 pages, 18 figures, 4 tables
Subjects: High Energy Astrophysical Phenomena (astro-ph.HE); Solar and Stellar Astrophysics (astro-ph.SR)
Cite as: arXiv:2303.01174 [astro-ph.HE]
  (or arXiv:2303.01174v1 [astro-ph.HE] for this version)

Submission history

From: Alexandra Veledina [view email]
[v1] Thu, 2 Mar 2023 11:37:30 GMT (2059kb,D)

Link back to: arXiv, form interface, contact.