We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

astro-ph.HE

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Astrophysics > High Energy Astrophysical Phenomena

Title: Gravitational wave emission from dynamical stellar interactions

Abstract: We are witnessing the dawn of gravitational wave (GW) astronomy. With currently available detectors, observations are restricted to GW frequencies in the range between ${\sim} 10\,\mathrm{Hz}$ and $10\,\mathrm{kHz}$, which covers the signals from mergers of compact objects. The launch of the space observatory LISA will open up a new frequency band for the detection of stellar interactions at lower frequencies. In this work, we predict the shape and strength of the GW signals associated with common-envelope interaction and merger events in binary stars, and we discuss their detectability. Previous studies estimated these characteristics based on semi-analytical models. In contrast, we used detailed three-dimensional magnetohydrodynamic simulations to compute the GW signals. We show that for the studied models, the dynamical phase of common-envelope events and mergers between main-sequence stars lies outside of the detectability band of the LISA mission. We find, however, that the final stages of common-envelope interactions leading to mergers of the stellar cores fall into the frequency band in which the sensitivity of LISA peaks, making them promising candidates for detection. These detections can constrain the enigmatic common-envelope dynamics. Furthermore, future decihertz observatories such as DECIGO or BBO would also be able to observe this final stage and the post-merger signal, through which we might be able to detect the formation of Thorne-\.Zytkow objects.
Comments: Accepted for publication in A&A, 12 pages, 8 figures
Subjects: High Energy Astrophysical Phenomena (astro-ph.HE); Solar and Stellar Astrophysics (astro-ph.SR); General Relativity and Quantum Cosmology (gr-qc)
Journal reference: A&A 672, A9 (2023)
DOI: 10.1051/0004-6361/202245109
Cite as: arXiv:2303.05519 [astro-ph.HE]
  (or arXiv:2303.05519v1 [astro-ph.HE] for this version)

Submission history

From: Javier Moran Fraile [view email]
[v1] Thu, 9 Mar 2023 19:00:00 GMT (2723kb,D)

Link back to: arXiv, form interface, contact.