We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

astro-ph.SR

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Astrophysics > Solar and Stellar Astrophysics

Title: Frequency analysis of the first-overtone RR Lyrae stars based on the Extended Aperture Photometry from the K2 data

Abstract: Additional low-amplitude signals are observed in many RR Lyrae stars, beside the pulsations in radial modes. The most common ones are short-period signals forming a period ratio of around 0.60--0.65 with the first overtone, or long-period signals forming a period ratio of around 0.68. The RR Lyrae stars may also exhibit quasi-periodic modulation of the light curves, known as the Blazhko effect. We used the extensive sample of the first-overtone RR Lyrae stars observed by the Kepler telescope during the K2 mission to search for and characterize these low-amplitude additional signals. K2 data provides space-based photometry for a statistically significant sample. Hence this data is excellent to study in detail pulsation properties of RR Lyrae stars. We used K2 space-based photometry for RR Lyrae candidates from Campaigns 0-19. We selected RR Lyrae stars pulsating in the first overtone and performed a frequency analysis for each star to characterize their frequency contents. We classified 452 stars as first-overtone RR Lyrae. From that sample, we selected 281 RR$_{0.61}$ stars, 67 RR$_{0.68}$ stars, and 68 Blazhko stars. We found particularly interesting stars which show all of the above phenomena simultaneously. We detected signals in RR$_{0.61}$ stars that form period ratios lower than observed for the majority of stars. These signals likely form a new sequence in the Petersen diagram, around a period ratio of 0.60. In 32 stars we detected additional signals that form a period ratio close to that expected in RRd stars, but the classification of these stars as RRd is uncertain. We also report a discovery of additional signals in eight stars that form a new group in the Petersen diagram around the period ratio of 0.465-0.490. The nature of this periodicity remains unknown.
Comments: 29 pages, 29 figures, 4 tables, accepted for publication in A&A, full tables are available upon request before publication
Subjects: Solar and Stellar Astrophysics (astro-ph.SR)
Journal reference: A&A 677, A177 (2023)
DOI: 10.1051/0004-6361/202245634
Cite as: arXiv:2303.12884 [astro-ph.SR]
  (or arXiv:2303.12884v1 [astro-ph.SR] for this version)

Submission history

From: Henryka Netzel [view email]
[v1] Wed, 22 Mar 2023 19:50:36 GMT (2640kb,D)

Link back to: arXiv, form interface, contact.