We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cond-mat.mes-hall

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Condensed Matter > Mesoscale and Nanoscale Physics

Title: Electrostatic control of nonlinear photonic-crystal polaritons in a monolayer semiconductor

Abstract: Integration of 2D semiconductors with photonic crystal slabs provides an attractive approach to achieve strong light--matter coupling and exciton-polariton formation in a planar chip-compatible geometry. However, for the development of practical devices, it is crucial that the polariton excitations in the structure are easily tunable and exhibit strong nonlinear response. Here we study neutral and charged exciton-polaritons in an electrostatically gated planar photonic crystal slab with an embedded monolayer semiconductor MoSe$_2$ and experimentally demonstrate strong polariton nonlinearity, which can be tuned via gate voltage. We find that modulation of dielectric environment within the photonic crystal results in the formation of two distinct resonances with significantly different nonlinear response, which enables optical switching with ultrashort laser pulses. Our results open new avenues towards development of active polaritonic devices in a compact chip-compatible implementation.
Subjects: Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Optics (physics.optics)
Cite as: arXiv:2402.16193 [cond-mat.mes-hall]
  (or arXiv:2402.16193v2 [cond-mat.mes-hall] for this version)

Submission history

From: Vasily Kravtsov [view email]
[v1] Sun, 25 Feb 2024 20:36:44 GMT (6462kb,D)
[v2] Wed, 27 Mar 2024 14:45:38 GMT (6462kb,D)

Link back to: arXiv, form interface, contact.