We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

math-ph

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Mathematical Physics

Title: Nodal count for a random signing of a graph with disjoint cycles

Abstract: Let $G$ be a simple, connected graph on $n$ vertices, and further assume that $G$ has disjoint cycles. Let $h$ be a real symmetric matrix supported on $G$ (for example, a discrete Schr\"odinger operator). The eigenvalues of $h$ are ordered increasingly, $\lambda_1 \le \cdots \le \lambda_n$, and if $\phi$ is the eigenvector corresponding to $\lambda_k$, the nodal (edge) count $\nu(h,k)$ is the number of edges $(rs)$ such that $ h_{rs}\phi_{r}\phi_{s}>0$. The nodal surplus is $\sigma(h,k)= \nu(h,k) - (k-1)$. Let $h'$ be a random signing of $h$, that is a real symmetric matrix obtained from $h$ by changing the sign of some of its off-diagonal elements. If $h$ satisfies a certain generic condition, we show for each $k$ that the nodal surplus has a binomial distribution $\sigma(h',k)\sim Bin(\beta,\frac{1}{2})$. Part of the proof follows ideas developed by the first author together with Ram Band and Gregory Berkolaiko in a joint unpublished project studying a similar question on quantum graphs.
Subjects: Mathematical Physics (math-ph); Spectral Theory (math.SP)
MSC classes: 05C50, 58J50, 81Q10, 81Q35
Cite as: arXiv:2403.01033 [math-ph]
  (or arXiv:2403.01033v1 [math-ph] for this version)

Submission history

From: Lior Alon [view email]
[v1] Fri, 1 Mar 2024 23:39:09 GMT (62kb,D)

Link back to: arXiv, form interface, contact.