We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

physics.geo-ph

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Physics > Geophysics

Title: Investigating radioactivity in soil samples from neutral and vegetation land of Punjab/India

Abstract: In this work, radioactivity investigations of soil samples from neutral and agricultural sites in Punjab/India have been carried out to study the impact of land use patterns. The analysis of radiological, mineralogical, physicochemical, and morphological attributes of soil samples has been performed employing state-of-the-art techniques. The mean activity concentration of 238U, 232Th, 40K, 235U, and 137Cs, measured using a carbon-loaded p-type HPGe detector, in neutral land was observed as 58.03, 83.95, 445.18, 2.83, and 1.16Bq kg-1, respectively. However, in vegetation land, it was found to be 40.07, 64.68, 596.74, 2.26 and 2.11Bq kg-1, respectively. In the detailed activity analysis, radium equivalent (Raeq) radioactivity is found to be in the safe prescribed limit of 370Bq kg-1 for all investigated soil samples. However, the dosimetric investigations revealed that the outdoor absorbed gamma dose rate (96.08nGy h-1) and consequent annual effective dose rate (0.12mSv y-1) for neutral land, and the gamma dose rate (82.46nGy h-1) and subsequent annual effective dose rate (0.10mSv y-1) for vegetation land marginally exceeded the global average. The surface morphology of neutral land favored more compactness, while agricultural land favored high porosity. Various heavy metals of health concern, namely As, Cd, Co, Cr, Cu, Hg, Pb, Se, and Zn, were also evaluated in all soil samples using Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS). Pollution Load Index (PLI) and Ecological Risk Index (RI) revealed that vegetation land was more anthropogenically contaminated than neutral land, with maximum contamination from Hg and As.
Comments: 33 pages, 12 figures, 6 tables
Subjects: Geophysics (physics.geo-ph)
Cite as: arXiv:2403.15414 [physics.geo-ph]
  (or arXiv:2403.15414v1 [physics.geo-ph] for this version)

Submission history

From: Sanjeet Kaintura Singh [view email]
[v1] Wed, 6 Mar 2024 14:32:24 GMT (2156kb)

Link back to: arXiv, form interface, contact.