We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

physics.app-ph

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Physics > Applied Physics

Title: In situ growth of hydrophilic nickel-cobalt layered double hydroxides nanosheets on biomass waste-derived porous carbon for high-performance hybrid supercapacitors

Abstract: Rational design and cost-effective fabrication of layered double hydroxides (LDHs) nanosheets with extraordinary electrochemical performance is a key challenge for hybrid supercapacitors (HSCs). Herein, we report a facile in situ growth methodology to eco-friendly synthesize hydrophilic NiCo-LDHs nanosheets on biomass waste-derived porous carbon (BC) for robust high-performance HSC cathode. The in situ growth process under ultrasonication realizes the rational arrangement of NiCo-LDHs nanosheets on the surface of BC, which effectively increases the specific surface area, promotes the electronic conductivity and enhances the wettability of NiCo-LDHs nanosheets without affecting their thickness values. With the beneficial effects of ultrathin thickness of LDHs nanosheets (6.20 nm), large specific surface area (2324.1 m2 g-1), low charge transfer resistance (1.65 ohm), and high wettability with electrolyte (34-35 degree), the obtained Ni2Co1-LDHs/BC50 electrode possesses an ultra-high specific capacitance of 2390 F g-1 (956 C g-1) at 1 A g-1, which is superior to most reported values. Furthermore, an assembled Ni2Co1-LDHs/BC50//YP-80F HSC delivers a maximum specific energy of 52.47 Wh kg-1 at 375 W kg-1, and maintains a high capacitance retention of 75.9% even after 4000 cycles. This work provides a facile approach to fabricate LDHs nanosheets based cathode materials for high-performance HSCs.
Subjects: Applied Physics (physics.app-ph); Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
Cite as: arXiv:2403.16506 [physics.app-ph]
  (or arXiv:2403.16506v1 [physics.app-ph] for this version)

Submission history

From: Yuchen Wang [view email]
[v1] Mon, 25 Mar 2024 07:40:29 GMT (6062kb)

Link back to: arXiv, form interface, contact.