We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

physics.space-ph

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Physics > Space Physics

Title: On the Heating of the Slow Solar-Wind by Imbalanced Alfvén-Wave Turbulence from 0.06 au to 1 au: Parker Solar Probe and Solar Orbiter observations

Abstract: In this work we analyze plasma and magnetic field data provided by the Parker Solar Probe (\emph{PSP}) and Solar Orbiter (\emph{SO}) missions to investigate the radial evolution of the heating of Alfv\'enic slow wind (ASW) by imbalanced Alfv\'en-Wave (AW) turbulent fluctuations from 0.06 au to 1 au. in our analysis we focus on slow solar-wind intervals with highly imbalanced and incompressible turbulence (i.e., magnetic compressibility $C_B=\delta B/B\leq 0.25$, plasma compressibility $C_n=\delta n/n\leq 0.25$ and normalized cross-helicity $\sigma_c\geq 0.65$). First, we estimate the AW turbulent dissipation rate from the wave energy equation and find that the radial profile trend is similar to the proton heating rate. Second, we find that the scaling of the empirical AW turbulent dissipation rate $Q_W$ obtained from the wave energy equation matches the scaling from the phenomenological AW turbulent dissipation rate $Q_{\rm CH09}$ (with $Q_{\rm CH09}\simeq 1.55 Q_W$) derived by~\cite{chandran09} based on the model of reflection-driven turbulence. Our results suggest that, as in the fast solar wind, AW turbulence plays a major role in the ion heating that occurs in incompressible slow-wind streams.
Comments: This paper has been accepted for publication in the Astrophysical Journal Letters
Subjects: Space Physics (physics.space-ph); Solar and Stellar Astrophysics (astro-ph.SR); Plasma Physics (physics.plasm-ph)
Cite as: arXiv:2403.17352 [physics.space-ph]
  (or arXiv:2403.17352v1 [physics.space-ph] for this version)

Submission history

From: Sofiane Bourouaine [view email]
[v1] Tue, 26 Mar 2024 03:31:24 GMT (543kb,D)

Link back to: arXiv, form interface, contact.