We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

astro-ph.SR

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Astrophysics > Solar and Stellar Astrophysics

Title: Magnetic helicity evolution during active region emergence and subsequent flare productivity

Abstract: Aims. Solar active regions (ARs), which are formed by flux emergence, serve as the primary sources of solar eruptions. However, the specific physical mechanism that governs the emergence process and its relationship with flare productivity remains to be thoroughly understood. Methods. We examined 136 emerging ARs, focusing on the evolution of their magnetic helicity and magnetic energy during the emergence phase. Based on the relation between helicity accumulation and magnetic flux evolution, we categorized the samples and investigated their flare productivity. Results. The emerging ARs we studied can be categorized into three types, Type-I, Type-II, and Type-III, and they account for 52.2%, 25%, and 22.8% of the total number in our sample, respectively. Type-I ARs exhibit a synchronous increase in both the magnetic flux and magnetic helicity, while the magnetic helicity in Type-II ARs displays a lag in increasing behind the magnetic flux. Type-III ARs show obvious helicity injections of opposite signs. Significantly, 90% of the flare-productive ARs (flare index > 6) were identified as Type-I ARs, suggesting that this type of AR has a higher potential to become flare productive. In contrast, Type-II and Type-III ARs exhibited a low and moderate likelihood of becoming active, respectively. Our statistical analysis also revealed that Type-I ARs accumulate more magnetic helicity and energy, far beyond what is found in Type-II and Type-III ARs. Moreover, we observed that flare-productive ARs consistently accumulate a significant amount of helicity and energy during their emergence phase. Conclusions. These findings provide valuable insight into the flux emergence phenomena, offering promising possibilities for early-stage predictions of solar eruptions.
Subjects: Solar and Stellar Astrophysics (astro-ph.SR)
Cite as: arXiv:2403.18354 [astro-ph.SR]
  (or arXiv:2403.18354v1 [astro-ph.SR] for this version)

Submission history

From: Zheng Sun [view email]
[v1] Wed, 27 Mar 2024 08:45:33 GMT (4117kb,D)

Link back to: arXiv, form interface, contact.