We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

hep-th

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

High Energy Physics - Theory

Title: Probing the quantum nature of gravity using a Bose-Einstein condensate; "Erste Abhandlung"

Abstract: The effect of noise induced by gravitons has been investigated using a Bose-Einstein condensate. The gravitational wave perturbation is then considerd as a sum of discrete Fourier modes in the momentum space. Coming to an operatorial representation and quantizing the phase space variables via appropriately introduced canonincal commutation relations between the canonically conjugate variables corresponding to the graviton and bosonic part of the total system, one obtains a proper quantum gravity setup. Then we obtain the Bogoliubov coefficients from the solution of the time-dependent part of the pseudo-Goldstone boson and construct the covariance metric for the bosons initially being in a squeezed state. Using the stochastic average of the Fisher information, we obtain a lower bound on the amplitude parameter of the gravitational wave. As the entire calculation is done at zero temperature, the bosonic system, by construction, will behave as a Bose-Einstein condensate. For a Bose-Einstein condensate with a single mode, we observe that the lower bound of the expectation value of the square of the uncertainty in the amplitude measurement does not become infinite when the total observational term approaches zero. In order to sum over all possible momentum modes, we next consider a noise term with a suitable Gaussian weight factor which decays over time. We then obtain the lower bound on the final expectation value of the square of the variance in the amplitude parameter. Because of the noise induced by the graviton, there is a minimum value of the measurement time below which it is impossible to detect any gravitational wave using a Bose-Einstein condensate. Finally, we consider interaction between the phonon modes of the Bose-Einstein condensate which results in a decoherence. We observe that the decoherence effect becomes significant for gravitons with minimal squeezing.
Comments: 24 pages LATEX,comments are welcome
Subjects: High Energy Physics - Theory (hep-th); General Relativity and Quantum Cosmology (gr-qc); Quantum Physics (quant-ph)
Cite as: arXiv:2403.18460 [hep-th]
  (or arXiv:2403.18460v1 [hep-th] for this version)

Submission history

From: Soham Sen [view email]
[v1] Wed, 27 Mar 2024 11:18:44 GMT (437kb,D)

Link back to: arXiv, form interface, contact.