We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cond-mat.mes-hall

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Condensed Matter > Mesoscale and Nanoscale Physics

Title: Rashba spin splitting-induced topological Hall effect in a Dirac semimetal-ferromagnetic semiconductor heterostructure

Abstract: We use a concerted theory-experiment effort to investigate the formation of chiral real space spin texture when the archetypal Dirac semimetal Cd$_3$As$_2$ is interfaced with In$_{1-x}$Mn$_x$As, a ferromagnetic semiconductor with perpendicular magnetic anisotropy. Our calculations reveal a nonzero off-diagonal spin susceptibility in the Cd$_3$As$_2$ layer due to the Rashba spin-orbit coupling from broken inversion symmetry. This implies the presence of a Dzyaloshinskii-Moriya interaction between local moments in the In$_{1-x}$Mn$_x$As layer, mediated by Dirac electrons in the vicinal Cd$_3$As$_2$ layer, potentially creating the conditions for a real space chiral spin texture. Using electrical magnetoresistance measurements at low temperature, we observe an emergent excess contribution to the transverse magneto-resistance whose behavior is consistent with a topological Hall effect arising from the formation of an interfacial chiral spin texture. This excess Hall voltage varies with gate voltage, indicating a promising electrostatically-tunable platform for understanding the interplay between the helical momentum space states of a Dirac semimetal and chiral real space spin textures in a ferromagnet.
Subjects: Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
Cite as: arXiv:2403.18485 [cond-mat.mes-hall]
  (or arXiv:2403.18485v1 [cond-mat.mes-hall] for this version)

Submission history

From: Nitin Samarth [view email]
[v1] Wed, 27 Mar 2024 11:58:14 GMT (5750kb,D)

Link back to: arXiv, form interface, contact.