We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cs.DS

Change to browse by:

References & Citations

DBLP - CS Bibliography

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Computer Science > Data Structures and Algorithms

Title: On the Communication Complexity of Approximate Pattern Matching

Abstract: The decades-old Pattern Matching with Edits problem, given a length-$n$ string $T$ (the text), a length-$m$ string $P$ (the pattern), and a positive integer $k$ (the threshold), asks to list all fragments of $T$ that are at edit distance at most $k$ from $P$. The one-way communication complexity of this problem is the minimum amount of space needed to encode the answer so that it can be retrieved without accessing the input strings $P$ and $T$.
The closely related Pattern Matching with Mismatches problem (defined in terms of the Hamming distance instead of the edit distance) is already well understood from the communication complexity perspective: Clifford, Kociumaka, and Porat [SODA 2019] proved that $\Omega(n/m \cdot k \log(m/k))$ bits are necessary and $O(n/m \cdot k\log (m|\Sigma|/k))$ bits are sufficient; the upper bound allows encoding not only the occurrences of $P$ in $T$ with at most $k$ mismatches but also the substitutions needed to make each $k$-mismatch occurrence exact.
Despite recent improvements in the running time [Charalampopoulos, Kociumaka, and Wellnitz; FOCS 2020 and 2022], the communication complexity of Pattern Matching with Edits remained unexplored, with a lower bound of $\Omega(n/m \cdot k\log(m/k))$ bits and an upper bound of $O(n/m \cdot k^3\log m)$ bits stemming from previous research. In this work, we prove an upper bound of $O(n/m \cdot k \log^2 m)$ bits, thus establishing the optimal communication complexity up to logarithmic factors. We also show that $O(n/m \cdot k \log m \log (m|\Sigma|))$ bits allow encoding, for each $k$-error occurrence of $P$ in $T$, the shortest sequence of edits needed to make the occurrence exact.
We leverage the techniques behind our new result on the communication complexity to obtain quantum algorithms for Pattern Matching with Edits.
Comments: 62 pages; abstract shortened
Subjects: Data Structures and Algorithms (cs.DS); Quantum Physics (quant-ph)
Cite as: arXiv:2403.18812 [cs.DS]
  (or arXiv:2403.18812v1 [cs.DS] for this version)

Submission history

From: Philip Wellnitz [view email]
[v1] Wed, 27 Mar 2024 17:57:16 GMT (334kb,D)

Link back to: arXiv, form interface, contact.