We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

math.NA

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Mathematics > Numerical Analysis

Title: Computing large deviation rate functions of entropy production for diffusion processes in the vanishing-noise limit and high dimensions by an interacting particle method

Abstract: We study an interacting particle method (IPM) for computing the large deviation rate function of entropy production for diffusion processes, with emphasis on the vanishing-noise limit and high dimensions. The crucial ingredient to obtain the rate function is the computation of the principal eigenvalue $\lambda$ of elliptic, non-self-adjoint operators. We show that this principal eigenvalue can be approximated in terms of the spectral radius of a discretized evolution operator obtained from an operator splitting scheme and an Euler--Maruyama scheme with a small time step size, and we show that this spectral radius can be accessed through a large number of iterations of this discretized semigroup, suitable for the IPM. The IPM applies naturally to problems in unbounded domains, scales easily to high dimensions, and adapts to singular behaviors in the vanishing-noise limit. We show numerical examples in dimensions up to 16. The numerical results show that our numerical approximation of $\lambda$ converges to the analytical vanishing-noise limit with a fixed number of particles and a fixed time step size. Our paper appears to be the first one to obtain numerical results of principal eigenvalue problems for non-self-adjoint operators in such high dimensions.
Subjects: Numerical Analysis (math.NA)
MSC classes: 37M25, 47D08, 60F10, 82C31
Cite as: arXiv:2403.19223 [math.NA]
  (or arXiv:2403.19223v1 [math.NA] for this version)

Submission history

From: Zhizhang Wu [view email]
[v1] Thu, 28 Mar 2024 08:36:54 GMT (1389kb)

Link back to: arXiv, form interface, contact.