We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

quant-ph

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Quantum Physics

Title: Quantum Realization of the Finite Element Method

Abstract: This paper presents a quantum algorithm for the solution of prototypical second-order linear elliptic partial differential equations discretized by $d$-linear finite elements on Cartesian grids of a bounded $d$-dimensional domain. An essential step in the construction is a BPX preconditioner, which transforms the linear system into a sufficiently well-conditioned one, making it amenable to quantum computation. We provide a constructive proof demonstrating that our quantum algorithm can compute suitable functionals of the solution to a given tolerance $\texttt{tol}$ with a complexity linear in $\texttt{tol}^{-1}$ for a fixed dimension $d$, neglecting logarithmic terms. This complexity is proportional to that of its one-dimensional counterpart and improves previous quantum algorithms by a factor of order $\texttt{tol}^{-2}$. We also detail the design and implementation of a quantum circuit capable of executing our algorithm, and present simulator results that support the quantum feasibility of the finite element method in the near future, paving the way for quantum computing approaches to a wide range of PDE-related challenges.
Subjects: Quantum Physics (quant-ph); Data Structures and Algorithms (cs.DS); Numerical Analysis (math.NA)
Cite as: arXiv:2403.19512 [quant-ph]
  (or arXiv:2403.19512v1 [quant-ph] for this version)

Submission history

From: Matthias Deiml [view email]
[v1] Thu, 28 Mar 2024 15:44:20 GMT (45kb)

Link back to: arXiv, form interface, contact.