We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cond-mat.mes-hall

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Condensed Matter > Mesoscale and Nanoscale Physics

Title: Gate-tunable quantum acoustoelectric transport in graphene

Abstract: Transport probes the motion of quasiparticles in response to external excitations. Apart from the well-known electric and thermoelectric transport, acoustoelectric transport induced by traveling acoustic waves has been rarely explored. Here, by adopting a hybrid nanodevices integrated with piezoelectric substrates, we establish a simple design of acoustoelectric transport with gate tunability. We fabricate dual-gated acoustoelectric devices based on BN-encapsuled graphene on LiNbO3. Longitudinal and transverse acoustoelectric voltages are generated by launching pulsed surface acoustic wave. The gate dependence of zero-field longitudinal acoustoelectric signal presents strikingly similar profiles as that of Hall resistivity, providing a valid approach for extracting carrier density without magnetic field. In magnetic fields, acoustoelectric quantum oscillations appear due to Landau quantization, which are more robust and pronounced than Shubnikov-de Haas oscillations. Our work demonstrates a feasible acoustoelectric setup with gate tunability, which can be extended to the broad scope of various Van der Waals materials.
Comments: 16 pages, 5 figures
Subjects: Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Materials Science (cond-mat.mtrl-sci)
Cite as: arXiv:2403.20248 [cond-mat.mes-hall]
  (or arXiv:2403.20248v1 [cond-mat.mes-hall] for this version)

Submission history

From: Cheng Zhang [view email]
[v1] Fri, 29 Mar 2024 15:48:37 GMT (2040kb)

Link back to: arXiv, form interface, contact.