We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cond-mat.stat-mech

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Condensed Matter > Statistical Mechanics

Title: Direction of spontaneous processes in non-equilibrium systems with movable/permeable internal walls

Abstract: The second law of equilibrium thermodynamics explains the direction of spontaneous processes in a system after removing internal constraints. When the system only exchanges energy with the environment as heat, the second law states that spontaneous processes at constant temperature satisfy: $\textrm{d} U - \delta Q \leq 0$. Here, $\textrm{d} U$ is the infinitesimal change of the internal energy, and $\delta Q$ is the infinitesimal heat exchanged in the process. We will consider three different systems in a heat flow: ideal gas, van der Waals gas, and a binary mixture of ideal gases. We will also study ideal gas and van der Waals gas in the heat flow and gravitational field. We will divide each system internally into two subsystems by a movable wall. We will show that the direction of the motion of the wall, after release, at constant boundary conditions is determined by the same inequality as in equilibrium thermodynamics. The only difference between equilibrium and non-equilibrium law is the dependence of the net heat change, $\delta Q$, on the state parameters of the system. We will also consider a wall thick and permeable to gas particles and derive Archimedes' principle in the heat flow. Finally, we will study the ideal gas's Couette flow, where the direction of the motion of the internal wall follows from the inequality $\textrm{d} E - \delta Q - \delta W_s \leq 0$, with $\textrm{d} E$ being the infinitesimal change of the total energy (internal and kinetic) and $\delta W_s$ the infinitesimal work exchanged with the environment due to shear force. Ultimately, we will synthesize all these cases in a framework of the second law of non-equilibrium thermodynamics.
Subjects: Statistical Mechanics (cond-mat.stat-mech)
Cite as: arXiv:2404.05757 [cond-mat.stat-mech]
  (or arXiv:2404.05757v2 [cond-mat.stat-mech] for this version)

Submission history

From: Paweł Żuk [view email]
[v1] Fri, 5 Apr 2024 20:59:34 GMT (639kb,D)
[v2] Mon, 29 Apr 2024 15:24:30 GMT (700kb)

Link back to: arXiv, form interface, contact.