We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cs.CG

Change to browse by:

cs

References & Citations

DBLP - CS Bibliography

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Computer Science > Computational Geometry

Title: Approximating shortest paths in weighted square and hexagonal meshes

Abstract: Continuous 2-dimensional space is often discretized by considering a mesh of weighted cells. In this work we study how well a weighted mesh approximates the space, with respect to shortest paths. We consider a shortest path $ \mathit{SP_w}(s,t) $ from $ s $ to $ t $ in the continuous 2-dimensional space, a shortest vertex path $ \mathit{SVP_w}(s,t) $ (or any-angle path), which is a shortest path where the vertices of the path are vertices of the mesh, and a shortest grid path $ \mathit{SGP_w}(s,t) $, which is a shortest path in a graph associated to the weighted mesh. We provide upper and lower bounds on the ratios $ \frac{\lVert \mathit{SGP_w}(s,t)\rVert}{\lVert \mathit{SP_w}(s,t)\rVert} $, $ \frac{\lVert \mathit{SVP_w}(s,t)\rVert}{\lVert \mathit{SP_w}(s,t)\rVert} $, $ \frac{\lVert \mathit{SGP_w}(s,t)\rVert}{\lVert \mathit{SVP_w}(s,t)\rVert} $ in square and hexagonal meshes, extending previous results for triangular grids. These ratios determine the effectiveness of existing algorithms that compute shortest paths on the graphs obtained from the grids. Our main results are that the ratio $ \frac{\lVert \mathit{SGP_w}(s,t)\rVert}{\lVert \mathit{SP_w}(s,t)\rVert} $ is at most $ \frac{2}{\sqrt{2+\sqrt{2}}} \approx 1.08 $ and $ \frac{2}{\sqrt{2+\sqrt{3}}} \approx 1.04 $ in a square and a hexagonal mesh, respectively.
Subjects: Computational Geometry (cs.CG)
Cite as: arXiv:2404.07562 [cs.CG]
  (or arXiv:2404.07562v1 [cs.CG] for this version)

Submission history

From: Guillermo Esteban [view email]
[v1] Thu, 11 Apr 2024 08:47:06 GMT (2477kb,D)

Link back to: arXiv, form interface, contact.