We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cond-mat.mes-hall

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Condensed Matter > Mesoscale and Nanoscale Physics

Title: Electron-phonon coupling induced topological phase transition in an $α$-$T_{3}$ Haldane-Holstein model

Abstract: We present impelling evidence of topological phase transitions induced by electron-phonon (e-ph) coupling in an $\alpha$-$T_3$ Haldane-Holstein model that presents smooth tunability between graphene ($\alpha=0$) and a dice lattice $(\alpha=1)$. The e-ph coupling has been incorporated via the Lang-Firsov transformation which adequately captures the polaron physics in the high frequency (anti-adiabatic) regime, and yields an effective Hamiltonian of the system through zero phonon averaging at $T=0$. While exploring the signature of the phase transition driven by polaron and its interplay with the parameter $\alpha$, we identify two regions based on the values of $\alpha$, namely, the low to intermediate range $(0 < \alpha \le 0.6)$ and larger values of $\alpha~(0.6 < \alpha < 1)$ where the topological transitions show distinct behaviour. There exists a single critical e-ph coupling strength for the former, below which the system behaves as a topological insulator characterized by edge modes, finite Chern number, and Hall conductivity, with all of them vanishing above this value, and the system undergoes a spectral gap closing transition. Further, the critical coupling strength depends upon $\alpha$. For the latter case $(0.6 < \alpha < 1)$, the scenario is more interesting where there are two critical values of the e-ph coupling at which trivial-topological-trivial and topological-topological-trivial phase transitions occur for $\alpha$ in the range $[0.6:1]$. Our studies on e-ph coupling induced phase transitions show a significant difference with regard to the well-known unique transition occurring at $\alpha = 0.5$ (or at $0.7$) in the absence of the e-ph coupling, and thus underscore the importance of interaction effects on the topological phase transitions.
Comments: 18 pages, 16 figures, comments are welcome
Subjects: Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
Cite as: arXiv:2404.08467 [cond-mat.mes-hall]
  (or arXiv:2404.08467v2 [cond-mat.mes-hall] for this version)

Submission history

From: Mijanur Islam [view email]
[v1] Fri, 12 Apr 2024 13:31:38 GMT (6513kb,D)
[v2] Fri, 19 Apr 2024 13:42:50 GMT (6607kb,D)

Link back to: arXiv, form interface, contact.