We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

quant-ph

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Quantum Physics

Title: Modeling Stochastic Chemical Kinetics on Quantum Computers

Abstract: The Chemical Master Equation (CME) provides a highly accurate, yet extremely resource-intensive representation of a stochastic chemical reaction network and its kinetics due to the exponential scaling of its possible states with the number of reacting species. In this work, we demonstrate how quantum algorithms and hardware can be employed to model stochastic chemical kinetics as described by the CME using the Schl\"ogl Model of a trimolecular reaction network as an illustrative example. To ground our study of the performance of our quantum algorithms, we first determine a range of suitable parameters for constructing the stochastic Schl\"ogl operator in the mono- and bistable regimes of the model using a classical computer and then discuss the appropriateness of our parameter choices for modeling approximate kinetics on a quantum computer. We then apply the Variational Quantum Deflation (VQD) algorithm to evaluate the smallest-magnitude eigenvalues, $\lambda_0$ and $\lambda_1$, which describe the transition rates of both the mono- and bi-stable systems, and the Quantum Phase Estimation (QPE) algorithm combined with the Variational Quantum Singular Value Decomposition (VQSVD) algorithm to estimate the zeromode (ground state) of the bistable case. Our quantum computed results from both noisy and noiseless quantum simulations agree within a few percent with the classically computed eigenvalues and zeromode. Altogether, our work outlines a practical path toward the quantum solution of exponentially complex stochastic chemical kinetics problems and other related stochastic differential equations.
Subjects: Quantum Physics (quant-ph); Other Condensed Matter (cond-mat.other); Adaptation and Self-Organizing Systems (nlin.AO); Chemical Physics (physics.chem-ph)
Cite as: arXiv:2404.08770 [quant-ph]
  (or arXiv:2404.08770v1 [quant-ph] for this version)

Submission history

From: Tilas Kabengele [view email]
[v1] Fri, 12 Apr 2024 18:53:38 GMT (2021kb,D)

Link back to: arXiv, form interface, contact.