We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cond-mat.mes-hall

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Condensed Matter > Mesoscale and Nanoscale Physics

Title: Influence of Auger heating and Shockley-Read-Hall recombination on hot carrier dynamics in InGaAs nanowires

Abstract: Understanding the origin of hot carrier relaxation in nanowires (NWs) with one-dimensional (1D) geometry is significant for designing efficient hot carrier solar cells with such nanostructures. Here, we study the influence of Auger heating and Shockley-Read-Hall recombination on hot carrier dynamics of catalyst-free InGaAs-InAlAs core-shell NWs. Using steady-state and time-resolved photoluminescence (PL) spectroscopy the dependencies of hot carrier effects on the degree of confinement of photo-generated carriers induced by the nanowire diameter are determined at different lattice temperatures. Analysis of excitation-power dependent data and temperature-dependent PL linewidth broadening reveal that at low temperatures, strong Auger recombination and phonon-bottleneck are responsible for hot carrier effects. Our analysis gives also insights into electron-phonon and ionized impurity scattering, showing opposing trends with NW diameter, and it allows to estimate the Fr\"ohlich coupling constant for the InGaAs NWs. Conversely, with increasing lattice temperature, hot carrier relaxation rates increase due to enhanced Shockley-Read Hall and surface recombination. Time-resolved spectroscopy reveals a fourfold increase in the rate of Shockley-Read-Hall recombination from 6 ns at 10 K to 1.5 ns at 150 K. The findings suggest that minimizing defect densities in the bulk and surfaces of these NWs will be key to enhance hot carrier effects towards higher temperatures.
Comments: 15 pages, 5 figures
Subjects: Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Applied Physics (physics.app-ph); Optics (physics.optics)
Cite as: arXiv:2404.09017 [cond-mat.mes-hall]
  (or arXiv:2404.09017v1 [cond-mat.mes-hall] for this version)

Submission history

From: Hamidreza Esmaielpour [view email]
[v1] Sat, 13 Apr 2024 14:17:47 GMT (741kb)

Link back to: arXiv, form interface, contact.