We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

quant-ph

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Quantum Physics

Title: Observation of thermal microwave photons with a Josephson junction detector

Abstract: When measuring electromagnetic radiation of frequency $f$, the most sensitive detector is the one that counts the single quanta of energy $h f$. Single photon detectors (SPDs) were demonstrated from $\gamma$-rays to infrared wavelengths, and extending this range down to the microwaves is the focus of intense research. The energy of $10\,\mathrm{GHz}$ microwave photon, about $40\,\mathrm{\mu eV}$ or $7\, \mathrm{yJ},$ is enough to force a superconducting Josephson junction into its resistive state, making it suitable to be used as a sensor. In this work, we use an underdamped Josephson junction to detect single thermal photons stochastically emitted by a microwave copper cavity at millikelvin temperatures. After characterizing the source and detector, we vary the temperature of the resonant cavity and measure the increased photon rate. The device shows an efficiency up to 40% and a dark count rate of $0.1\,\mathrm{Hz}$ in a bandwidth of several gigahertz. To confirm the thermal nature of the emitted photons we verify their super-Poissonian statistics, which is also a signature of quantum chaos. We discuss detector application in the scope of Dark Matter Axion searches, and note its importance for quantum information, metrology and fundamental physics.
Subjects: Quantum Physics (quant-ph); Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Superconductivity (cond-mat.supr-con)
Cite as: arXiv:2404.10434 [quant-ph]
  (or arXiv:2404.10434v1 [quant-ph] for this version)

Submission history

From: Nicolo' Crescini [view email]
[v1] Tue, 16 Apr 2024 09:57:30 GMT (6533kb,D)

Link back to: arXiv, form interface, contact.