We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cond-mat.mtrl-sci

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Condensed Matter > Materials Science

Title: Tunable magnetism in bilayer transition metal dichalcogenides

Abstract: Twist between neighboring layers and variation of interlayer distance are two extra ways to control the physical properties of stacked two-dimensional van der Waals materials without alteration of chemical compositions or application of external fields, compared to their monolayer counterparts. In this work, we explored the dependence of the magnetic states of the untwisted and twisted bilayer 1T-VX$_2$ (X = S, Se) on the interlayer distance by density functional theory calculations. We find that, while a magnetic phase transition occurs from interlayer ferromagnetism to interlayer antiferromagnetism either as a function of decreasing interlayer distance for the untwisted bilayer 1T-VX$_2$ or after twist, richer magnetic phase transitions consecutively take place for the twisted bilayer 1T-VX$_2$ as interlayer distance is gradually reduced. Besides, the critical pressures for the phase transition are greatly reduced in twisted bilayer 1T-VX$_2$ compared with the untwisted case. We derived the Heisenberg model with intralayer and interlayer exchange couplings to comprehend the emergence of various magnetic states. Our results point out an easy access towards tunable two-dimensional magnets.
Comments: 8 pages, 4 figures
Subjects: Materials Science (cond-mat.mtrl-sci); Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Strongly Correlated Electrons (cond-mat.str-el)
Journal reference: Phys. Rev. Materials 8, 034003 (2024)
DOI: 10.1103/PhysRevMaterials.8.034003
Cite as: arXiv:2404.11911 [cond-mat.mtrl-sci]
  (or arXiv:2404.11911v1 [cond-mat.mtrl-sci] for this version)

Submission history

From: Yu-Zhong Zhang [view email]
[v1] Thu, 18 Apr 2024 05:25:23 GMT (1545kb,D)

Link back to: arXiv, form interface, contact.