We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

nucl-th

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Nuclear Theory

Title: Nuclear charge radius predictions by kernel ridge regression with odd-even effects

Abstract: The extended kernel ridge regression (EKRR) method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models. These are: (i) the isospin dependent $A^{1/3}$ formula, (ii) relativistic continuum Hartree-Bogoliubov (RCHB) theory, (iii) Hartree-Fock-Bogoliubov (HFB) model HFB25, (iv) the Weizs\"acker-Skyrme (WS) model WS$^\ast$, and (v) HFB25$^\ast$ model. In the last two models, the charge radii were calculated using a five-parameter formula with the nuclear shell corrections and deformations obtained from the WS and HFB25 models, respectively. For each model, the resultant root-mean-square deviation for the 1014 nuclei with proton number $Z \geq 8$ can be significantly reduced to 0.009-0.013~fm after considering the modification with the EKRR method. The best among them was the RCHB model, with a root-mean-square deviation of 0.0092~fm. The extrapolation abilities of the KRR and EKRR methods for the neutron-rich region were examined and it was found that after considering the odd-even effects, the extrapolation power was improved compared with that of the original KRR method. The strong odd-even staggering of nuclear charge radii of Ca and Cu isotopes and the abrupt kinks across the neutron $N=126$ and 82 shell closures were also calculated and could be reproduced quite well by calculations using the EKRR method.
Comments: 8 pages, 5 figures, 1 table
Subjects: Nuclear Theory (nucl-th); Nuclear Experiment (nucl-ex)
Journal reference: Nucl. Sci. Tech. 35, 19 (2024)
DOI: 10.1007/s41365-024-01379-4
Cite as: arXiv:2404.12609 [nucl-th]
  (or arXiv:2404.12609v1 [nucl-th] for this version)

Submission history

From: Zhen-Hua Zhang [view email]
[v1] Fri, 19 Apr 2024 03:43:45 GMT (155kb)

Link back to: arXiv, form interface, contact.