We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cond-mat.mtrl-sci

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Condensed Matter > Materials Science

Title: Influence of strain and point defects on the electronic structure and related properties of (111)NiO epitaxial films

Abstract: (111)NiO epitaxial films are grown on c-sapphire substrates at various growth temperatures ranging from room-temperature to 600C using pulsed laser deposition (PLD) technique. Two series of samples, where different laser fluences are used to ablate the target, are studied here. Films grown with higher laser fluence, are found to be embedded with Ni-clusters crystallographically aligned with the (111)NiO matrix. While the layers grown with lower laser energy density exhibit p-type conductivity specially at low growth temperatures. X-ray diffraction study shows the coexistence of biaxial compressive and tensile hydrostatic strains in these samples, which results in an expansion of the lattice primarily along the growth direction. This effective uniaxial expansion {epsilon}_perpendicular increases with the reduction of the growth temperature. Band gap of these samples is found to decrease linearly with {epsilon}_perpendicular. This result is validated by density functional theory (DFT) calculations. Experimental findings and the theoretical study further indicate that V_Ni + O_I and V_O + Ni_I complexes exist as the dominant native defects in samples grown with Ni-deficient (low laser fluence) and Ni-rich (high laser fluence) conditions, respectively. P-type conductivity observed in the samples grown in Ni-deficient condition is more likely to be resulting from V_Ni + O_I defects than Ni-vacancies (V_Ni).
Comments: 9 pages and 9 figures (Main manuscript), 4 pages and 4 figures (supplemental material)
Subjects: Materials Science (cond-mat.mtrl-sci)
Cite as: arXiv:2404.13007 [cond-mat.mtrl-sci]
  (or arXiv:2404.13007v1 [cond-mat.mtrl-sci] for this version)

Submission history

From: Bhabani Prasad Sahu [view email]
[v1] Fri, 19 Apr 2024 17:09:43 GMT (960kb)

Link back to: arXiv, form interface, contact.