We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

quant-ph

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Quantum Physics

Title: Completing the Quantum Reconstruction Program via the Relativity Principle

Abstract: We explain how the disparate kinematics of quantum mechanics (finite-dimensional Hilbert space of QM) and special relativity (Minkowski spacetime from the Lorentz transformations of SR) can both be based on one principle (relativity principle). This is made possible by the axiomatic reconstruction of QM via information-theoretic principles, which has successfully recast QM as a principle theory a la SR. That is, in the quantum reconstruction program (QRP) and SR, the formalisms (Hilbert space and Lorentz transformations, respectively) are derived from empirically discovered facts (Information Invariance & Continuity and light postulate, respectively), so QM and SR are "principle theories" as defined by Einstein. While SR has a compelling fundamental principle to justify its empirically discovered fact (relativity principle), QRP has not produced a compelling fundamental principle or causal mechanism to account for its empirically discovered fact. To unify these disparate kinematics, we show how the relativity principle ("no preferred reference frame" NPRF) can also be used to justify Information Invariance & Continuity. We do this by showing that when QRP's operational notion of measurement is spatialized, Information Invariance & Continuity entails the empirically discovered fact that everyone measures the same value for Planck's constant h, regardless of their relative spatial orientations or locations (Planck postulate). Since Poincare transformations relate inertial reference frames via spatial rotations and translations as well as boosts, the relativity principle justifies the Planck postulate just like it justifies the light postulate. Essentially, NPRF + c is an adynamical global constraint over the spacetime configuration of worldtubes for bodily objects while NPRF + h is an adynamical global constraint over the distribution of quanta among those bodily objects.
Comments: 45 pages, 17 figures
Subjects: Quantum Physics (quant-ph); History and Philosophy of Physics (physics.hist-ph)
Cite as: arXiv:2404.13064 [quant-ph]
  (or arXiv:2404.13064v1 [quant-ph] for this version)

Submission history

From: W. M. Stuckey [view email]
[v1] Fri, 12 Apr 2024 13:27:25 GMT (3686kb,D)

Link back to: arXiv, form interface, contact.