We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

physics.app-ph

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Physics > Applied Physics

Title: Machine Learning-Assisted Thermoelectric Cooling for On-Demand Multi-Hotspot Thermal Management

Abstract: The rapid emergence of System-on-Chip (SoC) technology introduces multiple dynamic hotspots with spatial and temporal evolution to the system, necessitating a more efficient, sophisticated, and intelligent approach to achieve on-demand thermal management. In this study, we present a novel machine learning-assisted optimization algorithm for thermoelectric coolers (TECs) that can achieve global optimal temperature by individually controlling TEC units based on real-time multi-hotspot conditions across the entire domain. A convolutional neural network (CNN) with inception module is trained to comprehend the coupled thermal-electrical physics underlying the system and attain accurate temperature predictions with and without TECs. Due to the intricate interaction among passive thermal gradient, Peltier effect and Joule effect, a local optimal TEC control experiences spatial temperature trade-off which may not lead to a global optimal solution. To address this issue, a backtracking-based optimization algorithm is developed using the designed machine learning model to iterate all possible TEC assignments for attaining global optimal solutions. For arbitrary m by n matrix with NHS hotspots (n, m less than 10 and NHS less than 20), our algorithm is capable of providing global optimal temperature and its corresponding TEC array control in an average of 1.07 second while iterating through tens of temperature predictions behind-the-scenes. This represents a speed increase of over four orders of magnitude compared to traditional FEM strategies which take approximately 18 minutes.
Comments: This article has been submitted to Journal of Applied Physics under review
Subjects: Applied Physics (physics.app-ph); Machine Learning (cs.LG)
Cite as: arXiv:2404.13441 [physics.app-ph]
  (or arXiv:2404.13441v1 [physics.app-ph] for this version)

Submission history

From: Jiajian Luo [view email]
[v1] Sat, 20 Apr 2024 18:35:45 GMT (5256kb)

Link back to: arXiv, form interface, contact.