We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

astro-ph.GA

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Astrophysics > Astrophysics of Galaxies

Title: X-shooter spectroscopy of Liller1 giant stars

Abstract: We present the first comprehensive chemical study of a representative sample of 27 luminous red giant branch (RGB) stars belonging to Liller 1, a complex stellar system in the Galactic bulge. This study is based on medium-resolution near-infrared spectra acquired with X-shooter at the Very Large Telescope. We found a subpopulation counting 22 stars with subsolar metallicity ($<$[Fe/H]$>=-0.31\pm0.02$ and 1$\sigma$ dispersion of 0.08 dex) and with enhanced [$\alpha$/Fe], [Al/Fe], and [K/Fe] that likely formed early and quickly from gas that was mainly enriched by type II supernovae, and a metal-rich population counting 5 stars with supersolar metallicity ($<$[Fe/H]$>$=+0.22$\pm$0.03 and 1$\sigma$ dispersion of 0.06 dex) and roughly solar-scaled [$\alpha$/Fe], [Al/Fe], and [K/Fe] that formed at later epochs from gas that was also enriched by type Ia supernovae. Moreover, both subpopulations show enhanced [Na/Fe], as in the bulge field, about solar-scaled [V/Fe], and depletion of [C/Fe] and $^{12}$C/$^{13}$C with respect to the solar values. This indicates that mixing and extra-mixing processes during the RGB evolution also occur at very high metallicities. Notably, no evidence of a Na-O anticorrelation, which is considered the fingerprint of genuine globular clusters, has been found. This challenges any formation scenarios that invoke the accretion of a molecular cloud or an additional stellar system onto a genuine globular cluster. The results of this study underline the strong chemical similarity between Liller 1 and Terzan 5 and support the hypothesis that these complex stellar systems might be fossil fragments of the epoch of Galactic bulge formation.
Comments: Accepted for pubblication in A&A
Subjects: Astrophysics of Galaxies (astro-ph.GA); Solar and Stellar Astrophysics (astro-ph.SR)
Cite as: arXiv:2404.14130 [astro-ph.GA]
  (or arXiv:2404.14130v1 [astro-ph.GA] for this version)

Submission history

From: Deimer Antonio Alvarez Garay [view email]
[v1] Mon, 22 Apr 2024 12:30:20 GMT (843kb,D)

Link back to: arXiv, form interface, contact.