We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cond-mat.mes-hall

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Condensed Matter > Mesoscale and Nanoscale Physics

Title: Shaping non-reciprocal caustic spin-wave beams

Abstract: A caustic is a mathematical concept describing the beam formation when the beam envelope is reflected or refracted by a manifold. While caustics are common in a wide range of physical systems, caustics typically exhibit a reciprocal wave propagation and are challenging to control. Here, we utilize the highly anisotropic dispersion and inherent non-reciprocity of a magnonic system to shape non-reciprocal emission of caustic-like spin wave beams in an extended 200 nm thick yttrium iron garnet (YIG) film from a nano-constricted rf waveguide. We introduce a near-field diffraction model to study spin-wave beamforming in homogeneous in-plane magnetized thin films, and reveal the propagation of non-reciprocal spin-wave beams directly emitted from the nanoconstriction by spatially resolved micro-focused Brillouin light spectroscopy (BLS). The experimental results agree well with both micromagnetic simulation, and the near-field diffraction model. The proposed method can be readily implemented to study spin-wave interference at the sub-micron scale, which is central to the development of wave-based computing applications and magnonic devices.
Subjects: Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Applied Physics (physics.app-ph); Optics (physics.optics)
Cite as: arXiv:2404.15011 [cond-mat.mes-hall]
  (or arXiv:2404.15011v1 [cond-mat.mes-hall] for this version)

Submission history

From: Vincent Vlaminck [view email]
[v1] Tue, 23 Apr 2024 13:15:37 GMT (2372kb,D)

Link back to: arXiv, form interface, contact.