We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cs.CL

Change to browse by:

References & Citations

DBLP - CS Bibliography

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Computer Science > Computation and Language

Title: XFT: Unlocking the Power of Code Instruction Tuning by Simply Merging Upcycled Mixture-of-Experts

Abstract: We introduce XFT, a simple yet powerful training scheme, by simply merging upcycled Mixture-of-Experts (MoE) to unleash the performance limit of instruction-tuned code Large Language Models (LLMs). While vanilla sparse upcycling fails to improve instruction tuning, XFT introduces a shared expert mechanism with a novel routing weight normalization strategy into sparse upcycling, which significantly boosts instruction tuning. After fine-tuning the upcycled MoE model, XFT introduces a learnable model merging mechanism to compile the upcycled MoE model back to a dense model, achieving upcycled MoE-level performance with only dense-model compute. By applying XFT to a 1.3B model, we create a new state-of-the-art tiny code LLM (<3B) with 67.1 and 64.6 pass@1 on HumanEval and HumanEval+ respectively. With the same data and model architecture, XFT improves supervised fine-tuning (SFT) by 13% on HumanEval+, along with consistent improvements from 2% to 13% on MBPP+, MultiPL-E, and DS-1000, demonstrating its generalizability. XFT is fully orthogonal to existing techniques such as Evol-Instruct and OSS-Instruct, opening a new dimension for improving code instruction tuning. Codes are available at this https URL .
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG); Software Engineering (cs.SE)
Cite as: arXiv:2404.15247 [cs.CL]
  (or arXiv:2404.15247v1 [cs.CL] for this version)

Submission history

From: Yifeng Ding [view email]
[v1] Tue, 23 Apr 2024 17:32:24 GMT (250kb,D)

Link back to: arXiv, form interface, contact.