We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

q-bio.QM

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Quantitative Biology > Quantitative Methods

Title: VASARI-auto: equitable, efficient, and economical featurisation of glioma MRI

Abstract: The VASARI MRI feature set is a quantitative system designed to standardise glioma imaging descriptions. Though effective, deriving VASARI is time-consuming and seldom used in clinical practice. This is a problem that machine learning could plausibly automate. Using glioma data from 1172 patients, we developed VASARI-auto, an automated labelling software applied to both open-source lesion masks and our openly available tumour segmentation model. In parallel, two consultant neuroradiologists independently quantified VASARI features in a subsample of 100 glioblastoma cases. We quantified: 1) agreement across neuroradiologists and VASARI-auto; 2) calibration of performance equity; 3) an economic workforce analysis; and 4) fidelity in predicting patient survival. Tumour segmentation was compatible with the current state of the art and equally performant regardless of age or sex. A modest inter-rater variability between in-house neuroradiologists was comparable to between neuroradiologists and VASARI-auto, with far higher agreement between VASARI-auto methods. The time taken for neuroradiologists to derive VASARI was substantially higher than VASARI-auto (mean time per case 317 vs. 3 seconds). A UK hospital workforce analysis forecast that three years of VASARI featurisation would demand 29,777 consultant neuroradiologist workforce hours ({\pounds}1,574,935), reducible to 332 hours of computing time (and {\pounds}146 of power) with VASARI-auto. The best-performing survival model utilised VASARI-auto features as opposed to those derived by neuroradiologists. VASARI-auto is a highly efficient automated labelling system with equitable performance across patient age or sex, a favourable economic profile if used as a decision support tool, and with non-inferior fidelity in downstream patient survival prediction. Future work should iterate upon and integrate such tools to enhance patient care.
Comments: 28 pages, 6 figures, 1 table
Subjects: Quantitative Methods (q-bio.QM); Computer Vision and Pattern Recognition (cs.CV); Tissues and Organs (q-bio.TO)
Cite as: arXiv:2404.15318 [q-bio.QM]
  (or arXiv:2404.15318v1 [q-bio.QM] for this version)

Submission history

From: James Ruffle [view email]
[v1] Wed, 3 Apr 2024 13:33:07 GMT (12238kb)

Link back to: arXiv, form interface, contact.