We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

eess.SP

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Electrical Engineering and Systems Science > Signal Processing

Title: TransfoRhythm: A Transformer Architecture Conductive to Blood Pressure Estimation via Solo PPG Signal Capturing

Abstract: Recent statistics indicate that approximately 1.3 billion individuals worldwide suffer from hypertension, a leading cause of premature death globally. Blood pressure (BP) serves as a critical health indicator for accurate and timely diagnosis and/or treatment of hypertension. Driven by recent advancements in Artificial Intelligence (AI) and Deep Neural Networks (DNNs), there has been a surge of interest in developing data-driven and cuff-less BP estimation solutions. In this context, current literature predominantly focuses on coupling Electrocardiography (ECG) and Photoplethysmography (PPG) sensors, though this approach is constrained by reliance on multiple sensor types. An alternative, utilizing standalone PPG signals, presents challenges due to the absence of auxiliary sensors (ECG), requiring the use of morphological features while addressing motion artifacts and high-frequency noise. To address these issues, the paper introduces the TransfoRhythm framework, a Transformer-based DNN architecture built upon the recently released physiological database, MIMIC-IV. Leveraging Multi-Head Attention (MHA) mechanism, TransfoRhythm identifies dependencies and similarities across data segments, forming a robust framework for cuff-less BP estimation solely using PPG signals. To our knowledge, this paper represents the first study to apply the MIMIC IV dataset for cuff-less BP estimation, and TransfoRhythm is the first MHA-based model trained via MIMIC IV for BP prediction. Performance evaluation through comprehensive experiments demonstrates TransfoRhythm's superiority over its state-of-the-art counterparts. Specifically, TransfoRhythm achieves highly accurate results with Root Mean Square Error (RMSE) of [1.84, 1.42] and Mean Absolute Error (MAE) of [1.50, 1.17] for systolic and diastolic blood pressures, respectively.
Subjects: Signal Processing (eess.SP); Machine Learning (cs.LG)
Cite as: arXiv:2404.15352 [eess.SP]
  (or arXiv:2404.15352v1 [eess.SP] for this version)

Submission history

From: Arash Mohammadi [view email]
[v1] Mon, 15 Apr 2024 00:36:33 GMT (5561kb,D)

Link back to: arXiv, form interface, contact.