We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

physics.app-ph

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Physics > Applied Physics

Title: On-liquid-gallium surface synthesis of ultra-smooth conductive metal-organic framework thin films

Abstract: Conductive metal-organic frameworks (MOFs) are emerging electroactive materials for (opto-)electronics. However, it remains a great challenge to achieve reliable MOF-based devices via the existing synthesis methods that are compatible with the complementary metal-oxide-semiconductor technology, as the surface roughness of thus-far synthetic MOF films or pellets is rather high for efficient electrode contact. Here, we develop an on-liquid-gallium surface synthesis (OLGSS) strategy under chemical vapor deposition (CVD) conditions for the controlled growth of two-dimensional conjugated MOF (2D c-MOF) thin films with ten-fold improvement of surface flatness (surface roughness can reach as low as ~2 {\AA}) compared with MOF films grown by the traditional methods. Supported by theoretical modeling, we unveil a layer-by-layer CVD growth mode for constructing flattening surfaces, that is triggered by the high adhesion energy between gallium (Ga) and planar aromatic ligands. We further demonstrate the generality of the as-proposed OLGSS strategy by reproducing such a flat surface over nine different 2D c-MOF films with variable thicknesses (~2 to 208 nm) and large lateral sizes (over 1 cm2). The resultant ultra-smooth 2D c-MOF films enable the formation of high-quality electrical contacts with gold (Au) electrodes, leading to a reduction of contact resistance by over ten orders of magnitude compared to the traditional uneven MOF films. Furthermore, due to the efficient interfacial interaction benifited from the high-quality contacts, the prepared van der Waals heterostructure (vdWH) of OLGSS c-MOF and MoS2 exhibits intriguing photoluminescence (PL) enhancement, PL peak shift and large work function modulation. The establishment of the reliable OLGSS method provides the chances to push the development of MOF electronics and the construction of multicomponent MOF-based heterostructure materials.
Subjects: Applied Physics (physics.app-ph); Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
Cite as: arXiv:2404.15357 [physics.app-ph]
  (or arXiv:2404.15357v1 [physics.app-ph] for this version)

Submission history

From: Yana Vaynzof [view email]
[v1] Wed, 17 Apr 2024 12:04:17 GMT (1020kb)

Link back to: arXiv, form interface, contact.