We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cond-mat.soft

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Condensed Matter > Soft Condensed Matter

Title: Jamming memory into acoustically trained dense suspensions under shear

Abstract: Systems driven far from equilibrium often retain structural memories of their processing history. This memory has, in some cases, been shown to dramatically alter the material response. For example, work hardening in crystalline metals can alter the hardness, yield strength, and tensile strength to prevent catastrophic failure. Whether memory of processing history can be similarly exploited in flowing systems, where significantly larger changes in structure should be possible, remains poorly understood. Here, we demonstrate a promising route to embedding such useful memories. We build on work showing that exposing a sheared dense suspension to acoustic perturbations of different power allows for dramatically tuning the sheared suspension viscosity and underlying structure. We find that, for sufficiently dense suspensions, upon removing the acoustic perturbations, the suspension shear jams with shear stress contributions from the maximum compressive and maximum extensive axes that reflect the acoustic training. Because the contributions from these two orthogonal axes to the total shear stress are antagonistic, it is possible to tune the resulting suspension response in surprising ways. For example, we show that differently trained sheared suspensions exhibit: 1) different susceptibility to the same acoustic perturbation; 2) orders of magnitude changes in their instantaneous viscosities upon shear reversal; and 3) even a shear stress that increases in magnitude upon shear cessation. To further illustrate the power of this approach for controlling suspension properties, we demonstrate that flowing states well below the shear jamming threshold can be shear jammed via acoustic training. Collectively, our work paves the way for using acoustically induced memory in dense suspensions to generate rapidly and widely tunable materials.
Comments: To be published in Physical Review X
Subjects: Soft Condensed Matter (cond-mat.soft)
Cite as: arXiv:2404.15850 [cond-mat.soft]
  (or arXiv:2404.15850v1 [cond-mat.soft] for this version)

Submission history

From: Edward Yong Xi Ong [view email]
[v1] Wed, 24 Apr 2024 12:58:33 GMT (2739kb,D)

Link back to: arXiv, form interface, contact.