We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

quant-ph

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Quantum Physics

Title: Birefringent spin-photon interface generates polarization entanglement

Abstract: A spin-photon interface based on the luminescence of a singly charged quantum dot in a micropillar cavity allows for the creation of photonic entangled states. Current devices suffer from cavity birefringence, which limits the generation of spin-photon entanglement. In this paper, we theoretically study the light absorption and emission by the interface with an anisotropic cavity and derive the maximal excitation and spin-photon entanglement conditions. We show that the concurrence of the spin-photon state equal to one and complete quantum dot population inversion can be reached for a micropillar cavity with any degree of birefringence by tuning the quantum dot resonance strictly between the cavity modes. This sweet spot is also valid for generating a multiphoton cluster state, as we demonstrate by calculating the three-tangle and fidelity with the maximally entangled state.
Comments: 10 pages, 4 figures
Subjects: Quantum Physics (quant-ph); Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Optics (physics.optics)
Cite as: arXiv:2404.16025 [quant-ph]
  (or arXiv:2404.16025v1 [quant-ph] for this version)

Submission history

From: Nikita Leppenen [view email]
[v1] Wed, 24 Apr 2024 17:56:48 GMT (1165kb,D)

Link back to: arXiv, form interface, contact.