We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cond-mat.mes-hall

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Condensed Matter > Mesoscale and Nanoscale Physics

Title: Spectral Density and Sum Rules for Second-Order Response Functions

Abstract: Sum rules for linear response functions give powerful and experimentally-relevant relations between frequency moments of response functions and ground state properties. In particular, renewed interest has been drawn to optical conductivity and density-density sum rules and their connection to quantum geometry in topological materials. At the same time, recent work has also illustrated the connection between quantum geometry and second-order nonlinear response functions in quantum materials, motivating the search for exact sum rules for second-order response that can provide experimental probes and theoretical constraints for geometry and topology in these systems. Here we begin to address these questions by developing a general formalism for deriving sum rules for second-order response functions. Using generalized Kramers-Kronig relations, we show that the second-order Kubo formula can be expressed in terms of a spectral density that is a sum of Dirac delta functions in frequency. We show that moments of the spectral density can be expressed in terms of averages of equal-time commutators, yielding a family of generalized sum rules; furthermore, these sum rules constrain the large-frequency asymptotic behavior of the second harmonic generation rate. We apply our formalism to study generalized $f$-sum rules for the second-order density-density response function and the longitudinal nonlinear conductivity. We show that for noninteracting electrons in solids, the generalized $f$-sum rule can be written entirely in terms of matrix elements of the Bloch Hamiltonian. Finally, we derive a family of sum rules for rectification response, determining the large-frequency asymptotic behavior of the time-independent response to a harmonic perturbation.
Comments: 17 pages
Subjects: Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Statistical Mechanics (cond-mat.stat-mech); Strongly Correlated Electrons (cond-mat.str-el)
Cite as: arXiv:2404.16144 [cond-mat.mes-hall]
  (or arXiv:2404.16144v1 [cond-mat.mes-hall] for this version)

Submission history

From: Barry Bradlyn [view email]
[v1] Wed, 24 Apr 2024 19:01:53 GMT (28kb)

Link back to: arXiv, form interface, contact.