We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Ancillary-file links:

Ancillary files (details):

Current browse context:

cond-mat.mtrl-sci

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Condensed Matter > Materials Science

Title: Synthesis of layered gold tellurides AuSbTe and Au$_2$Te$_3$ and their semiconducting and metallic behavior

Abstract: Previous studies on natural samples of pampaloite (AuSbTe) revealed the crystal structure of a potentially cleavable and/or exfoliable material, while studies on natural and synthetic montbrayite (Sb-containing Au$_2$Te$_3$) claimed various chemical compositions for this low symmetry compound. Few investigations of synthetic samples have been reported for both materials, leaving much of their chemical, thermal and electronic characteristics unknown. Here, we investigate the stability, electronic properties and synthesis of the gold antimony tellurides AuSbTe and Au$_{1.9}$Sb$_{0.46}$Te$_{2.64}$ (montbrayite). Differential thermal analysis and $\textit{in situ}$ powder x-ray diffraction revealed that AuSbTe is incongruently melting, while Au$_{1.9}$Sb$_{0.46}$Te$_{2.64}$ is congruently melting. Calculations of the band structures and four-point resistivity measurements showed that AuSbTe is a semiconductor and Au$_{1.9}$Sb$_{0.46}$Te$_{2.64}$ a metal. Various synthesis attempts confirmed the limited stable chemical composition of Au$_{1.9}$Sb$_{0.46}$Te$_{2.64}$, identified successful methods to synthesize both compounds, and highlighted the challenges associated with single crystal synthesis of AuSbTe.
Comments: 12 pages, 13 figures
Subjects: Materials Science (cond-mat.mtrl-sci)
Cite as: arXiv:2404.16239 [cond-mat.mtrl-sci]
  (or arXiv:2404.16239v1 [cond-mat.mtrl-sci] for this version)

Submission history

From: Emma Pappas [view email]
[v1] Wed, 24 Apr 2024 22:53:50 GMT (9646kb,AD)

Link back to: arXiv, form interface, contact.